首页> 外文期刊>IEEE Transactions on Neural Networks >Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling
【24h】

Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling

机译:约束满意自适应神经网络和启发式组合方法进行广义Job-shop调度

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
机译:本文提出了一种约束满足自适应神经网络,结合几种启发式方法,来解决广义作业车间调度问题,这是NP完全约束满足问题之一。所提出的神经网络可以很容易地构造,并且可以根据作业车间调度问题在处理过程中的顺序和资源约束来自适应地调整其连接权重和单元偏差。还介绍了可以与神经网络结合的几种启发式方法。在组合方法中,使用神经网络来获得可行的解决方案,使用启发式算法来改善神经网络的性能和所获得的解决方案的质量。仿真表明,所提出的神经网络及其组合方法在解决方案的质量和求解速度方面都是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号