首页> 外文期刊>IEEE Transactions on Neural Networks >NDRAM: nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns
【24h】

NDRAM: nonlinear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns

机译:NDRAM:用于学习双极性和非双极性相关模式的非线性动态递归关联存储器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian/anti-Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.
机译:本文提出了一个新的无监督吸引子神经网络,与最优线性联想记忆模型相反,它能够开发非双极性吸引子和双极性吸引子。此外,与任何其他Hopfield类型的神经网络相比,该模型能够减少杂散吸引子,并在随机噪声下具有更好的召回性能。这些性能是通过简单的Hebbian / anti-Hebbian在线学习规则获得的,该规则直接合并了来自特定非线性传输规则的反馈。若干计算机模拟显示了该模型的独特属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号