首页> 外文期刊>IEEE Transactions on Neural Networks >Kernel Classifier Construction Using Orthogonal Forward Selection and Boosting With Fisher Ratio Class Separability Measure
【24h】

Kernel Classifier Construction Using Orthogonal Forward Selection and Boosting With Fisher Ratio Class Separability Measure

机译:正交前向选择和费舍尔比率类可分离性度量增强的核分类器构造

获取原文
获取原文并翻译 | 示例

摘要

A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers that generalize well
机译:提出了一种贪婪技术,利用正交前向选择方法构造简约核分类器,并基于费舍尔比率进行提升,以进行类可分离性度量。与大多数核分类方法不同,该方法将核方法限制在训练输入数据上,并对所有核项使用固定的公共方差,因此该技术可以通过递增最大化类的Fisher比来调整单个核的均值矢量和对角协方差矩阵可分离性度量。提出了一种有效的加权优化方法,该方法基于增强以正交前向选择过程将内核一个接一个地追加。使用这种构造技术获得的实验结果表明,它为构造稀疏的高斯径向基函数网络分类器提供了可行的替代方法,以替代现有的最新内核建模方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号