首页> 外文期刊>IEEE Transactions on Neural Networks >Face Recognition Using an Enhanced Independent Component Analysis Approach
【24h】

Face Recognition Using an Enhanced Independent Component Analysis Approach

机译:使用增强的独立分量分析方法的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with an enhanced independent component analysis (ICA) and its application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning and high-order statistics. In this paper, we develop an enhancement of the generic ICA by augmenting this method by the Fisher linear discriminant analysis (LDA); hence, its abbreviation, FICA. The FICA is systematically developed and presented along with its underlying architecture. A comparative analysis explores four distance metrics, as well as classification with support vector machines (SVMs). We demonstrate that the FICA approach leads to the formation of well-separated classes in low-dimension subspace and is endowed with a great deal of insensitivity to large variation in illumination and facial expression. The comprehensive experiments are completed for the facial-recognition technology (FERET) face database; a comparative analysis demonstrates that FICA comes with improved classification rates when compared with some other conventional approaches such as eigenface, fisherface, and the ICA itself
机译:本文涉及增强的独立成分分析(ICA)及其在人脸识别中的应用。通常,由ICA获得的面部表示涉及无监督学习和高阶统计。在本文中,我们通过Fisher线性判别分析(LDA)扩展了这种方法,从而增强了通用ICA。因此,它的缩写是FICA。 FICA是经过系统开发并与基础架构一起呈现的。对比分析探讨了四个距离度量,以及支持向量机(SVM)的分类。我们证明,FICA方法导致在低维子空间中形成良好分隔的类,并且对照明和面部表情的大变化具有很大的不敏感性。完成了人脸识别技术(FERET)人脸数据库的综合实验;一项比较分析表明,与本征面,鱼面和ICA本身等其他常规方法相比,FICA的分类率有所提高

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号