首页> 外文期刊>IEEE Transactions on Neural Networks >Individual Stable Space: An Approach to Face Recognition Under Uncontrolled Conditions
【24h】

Individual Stable Space: An Approach to Face Recognition Under Uncontrolled Conditions

机译:个体稳定空间:一种不受控制的人脸识别方法

获取原文
获取原文并翻译 | 示例

摘要

There usually exist many kinds of variations in face images taken under uncontrolled conditions, such as changes of pose, illumination, expression, etc. Most previous works on face recognition (FR) focus on particular variations and usually assume the absence of others. Instead of such a “divide and conquer” strategy, this paper attempts to directly address face recognition under uncontrolled conditions. The key is the individual stable space (ISS), which only expresses personal characteristics. A neural network named ISNN is proposed to map a raw face image into the ISS. After that, three ISS-based algorithms are designed for FR under uncontrolled conditions. There are no restrictions for the images fed into these algorithms. Moreover, unlike many other FR techniques, they do not require any extra training information, such as the view angle. These advantages make them practical to implement under uncontrolled conditions. The proposed algorithms are tested on three large face databases with vast variations and achieve superior performance compared with other 12 existing FR techniques.
机译:在不受控制的条件下拍摄的人脸图像中通常会存在多种变化,例如姿势,照明,表情等的变化。以前大多数有关人脸识别(FR)的工作都着眼于特定的变化,并且通常假设没有其他变化。代替这种“分而治之”的策略,本文尝试在不受控制的条件下直接解决人脸识别问题。关键是个人稳定空间(ISS),该空间仅表示个人特征。提出了一个名为ISNN的神经网络,将原始人脸图像映射到ISS中。之后,针对不可控条件下的帧中继设计了三种基于ISS的算法。对于送入这些算法的图像没有限制。此外,与许多其他FR技术不同,它们不需要任何额外的训练信息,例如视角。这些优点使它们可以在不受控制的条件下实施。与其他12种现有FR技术相比,所提出的算法在具有较大变化的3个大型人脸数据库上进行了测试,并实现了卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号