首页> 外文期刊>IEEE Transactions on Neural Networks >Multiclass Posterior Probability Support Vector Machines
【24h】

Multiclass Posterior Probability Support Vector Machines

机译:多类后验概率支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Tao et. al. have recently proposed the posterior probability support vector machine (PPSVM) which uses soft labels derived from estimated posterior probabilities to be more robust to noise and outliers. Tao et. al.''s model uses a window-based density estimator to calculate the posterior probabilities and is a binary classifier. We propose a neighbor-based density estimator and also extend the model to the multiclass case. Our bias-variance analysis shows that the decrease in error by PPSVM is due to a decrease in bias. On 20 benchmark data sets, we observe that PPSVM obtains accuracy results that are higher or comparable to those of canonical SVM using significantly fewer support vectors.
机译:陶等等最近已经提出了后验概率支持向量机(PPSVM),该机器使用从估计的后验概率导出的软标签对噪声和离群值更鲁棒。陶等等人的模型使用基于窗口的密度估计器来计算后验概率,并且是二进制分类器。我们提出了一种基于邻域的密度估计器,并将模型扩展到多类情况。我们的偏差方差分析表明,PPSVM的误差减少是由于偏差的减少所致。在20个基准数据集上,我们观察到PPSVM使用少得多的支持向量即可获得与标准SVM更高或相当的准确性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号