首页> 外文期刊>Neural Networks, IEEE Transactions on >Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks With Mixed Mode-Dependent Time Delays
【24h】

Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks With Mixed Mode-Dependent Time Delays

机译:依赖于混合模式的时滞离散时间马尔可夫跳跃神经网络的稳定性和同步

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new class of discrete-time neural networks (DNNs) with Markovian jumping parameters as well as mode-dependent mixed time delays (both discrete and distributed time delays). Specifically, the parameters of the DNNs are subject to the switching from one to another at different times according to a Markov chain, and the mixed time delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. We first deal with the stability analysis problem of the addressed neural networks. A special inequality is developed to account for the mixed time delays in the discrete-time setting, and a novel Lyapunov–Krasovskii functional is put forward to reflect the mode-dependent time delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the stochastic stability. We then turn to the synchronization problem among an array of identical coupled Markovian jumping neural networks with mixed mode-dependent time delays. By utilizing the Lyapunov stability theory and the Kronecker product, it is shown that the addressed synchronization problem is solvable if several LMIs are feasible. Hence, different from the commonly used matrix norm theories (such as the $M$-matrix method), a unified LMI approach is developed to solve the stability analysis and synchronization problems of the class of neural networks under investigation, where the LMIs can be easily solved by using the available Matlab LMI toolbox. Two numerical examples are presented to illustrate the usefulness and effectiveness of the main results obtained.
机译:在本文中,我们介绍了一类新的具有马尔可夫跳跃参数以及与模式相关的混合时延(离散和分布式时延)的离散时间神经网络(DNN)。具体而言,DNN的参数会根据马尔可夫链在不同的时间从一个切换到另一个,并且混合时间延迟包括离散延迟和分布式延迟,这些离散延迟和分布延迟取决于马尔可夫跳跃模式。我们首先处理寻址神经网络的稳定性分析问题。开发了一个特殊的不等式来解决离散时间设置中的混合时间延迟,并提出了一种新颖的Lyapunov–Krasovskii函数来反映与模式有关的时间延迟。根据线性矩阵不等式(LMI)建立了充分条件,可以保证随机稳定性。然后,我们转向具有依赖于混合模式的时滞的相同耦合马尔可夫跳跃神经网络阵列之间的同步问题。通过利用Lyapunov稳定性理论和Kronecker乘积,证明了如果几个LMI可行,则解决的同步问题可以解决。因此,不同于常用的矩阵规范理论(例如$ M $-矩阵方法),开发了统一的LMI方法来解决所研究的神经网络类的稳定性分析和同步问题,其中LMI可以是使用可用的Matlab LMI工具箱可以轻松解决。给出两个数值示例,以说明所获得主要结果的实用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号