...
首页> 外文期刊>Neural Networks, IEEE Transactions on >Comparison Between Analog and Digital Neural Network Implementations for Range-Finding Applications
【24h】

Comparison Between Analog and Digital Neural Network Implementations for Range-Finding Applications

机译:测距应用的模拟和数字神经网络实现之间的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A neural network (NN) was developed in order to increase the distance range of a phase-shift laser range finder and to achieve surface recognition, by using two photoelectrical signals issued from the measurement system. The NN architecture consists of a multilayer perceptron (MLP) with two inputs, three neurons in the hidden layer, and one output. Depending on the application, the NN output has to resolve the ambiguity due to phase-shift measurement by linearizing the inverse of the square law, or to indicate an output voltage corresponding to the tested surface. This embedded system dedicated to optoelectronic measurements was successfully tested with an analog NN, implemented in 0.35-$mu$ m complimentary metal–oxide–semiconductor (CMOS) technology, resulting in a threefold increase in the distance range with respect to the one limited by the phase-shift measurement, and by discriminating four types of surfaces (a plastic surface, glossy paper, a painted wall, and a porous surface), at a remote distance between the range finder and the target varying from 0.5 m up to 1.25 m and with a laser beam angle varying between ${-}pi/6$ and $pi/6$ with respect to the target. In this type of application, NN analog implementation provides many advantages, notably use of a small silicon area, low power consumption and no analog-to-digital conversions (ADCs). Nevertheless, digital implementation allows ease of conception and reconfigurability and an embedded weight and bias update. This paper presents the complete measurement system and a comparison between both types of implementation, by developing the advantages and drawbacks relative to each method. An optimized mixed architecture, using both techniques, is then proposed and discussed at the end of the p-n-naper.
机译:为了增加相移激光测距仪的距离范围并通过使用从测量系统发出的两个光电信号来实现表面识别,开发了一个神经网络(NN)。 NN体系结构由多层感知器(MLP)组成,该感知器具有两个输入,隐藏层中的三个神经元和一个输出。取决于应用,NN输出必须通过线性化平方律的反函数来解决由于相移测量引起的歧义,或者指示与测试表面相对应的输出电压。该专用于光电测量的嵌入式系统已通过模拟NN成功测试,该模拟NN采用0.35-μm的互补金属氧化物半导体(CMOS)技术实现,导致距离范围比受限制的范围增加了三倍。进行相移测量,并通过区分四种类型的表面(塑料表面,光面纸,粉刷墙壁和多孔表面),在测距仪和目标之间的较远距离范围从0.5 m到1.25 m不等且相对于目标的激光束角度在$ {-} pi / 6 $和$ pi / 6 $之间变化。在这种类型的应用中,NN模拟实现具有许多优势,特别是使用硅面积小,功耗低且无需模数转换(ADC)。然而,数字实现允许概念和可重新配置性的简化,以及嵌入式的权重和偏差更新。本文通过介绍每种方法的优缺点,介绍了完整的测量系统以及两种实现方式之间的比较。然后在p-n-naper的末尾提出并讨论了使用这两种技术的优化混合体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号