首页> 外文期刊>Neural Networks, IEEE Transactions on >Large-Scale Pattern Storage and Retrieval Using Generalized Brain-State-in-a-Box Neural Networks
【24h】

Large-Scale Pattern Storage and Retrieval Using Generalized Brain-State-in-a-Box Neural Networks

机译:使用框内广义脑神经网络进行大规模模式存储和检索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a generalized Brain-State-in-a-Box (gBSB)-based hybrid neural network is proposed for storing and retrieving pattern sequences. The hybrid network consists of autoassociative and heteroassociative parts. Then, a large-scale image storage and retrieval neural system is constructed using the gBSB-based hybrid neural network and the pattern decomposition concept. The notion of the deadbeat stability is employed to describe the stability property of the vertices of the hypercube to which the trajectories of the gBSB neural system are constrained. Extensive simulations of large scale pattern and image storing and retrieval are presented to illustrate the results obtained.
机译:本文提出了一种基于通用脑框状态混合神经网络的存储和检索模式序列的方法。混合网络由自缔合和异缔合部分组成。然后,使用基于gBSB的混合神经网络和模式分解概念构建了大型图像存储和检索神经系统。使用无差拍稳定性的概念来描述gBSB神经系统的轨迹所约束的超立方体的顶点的稳定性。提出了大规模图案和图像存储与检索的广泛模拟,以说明获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号