首页> 外文期刊>Neural Networks, IEEE Transactions on >Using Unsupervised Analysis to Constrain Generalization Bounds for Support Vector Classifiers
【24h】

Using Unsupervised Analysis to Constrain Generalization Bounds for Support Vector Classifiers

机译:使用无监督分析来约束支持向量分类器的泛化边界

获取原文
获取原文并翻译 | 示例

摘要

A crucial issue in designing learning machines is to select the correct model parameters. When the number of available samples is small, theoretical sample-based generalization bounds can prove effective, provided that they are tight and track the validation error correctly. The maximal discrepancy (MD) approach is a very promising technique for model selection for support vector machines (SVM), and estimates a classifier's generalization performance by multiple training cycles on random labeled data. This paper presents a general method to compute the generalization bounds for SVMs, which is based on referring the SVM parameters to an unsupervised solution, and shows that such an approach yields tight bounds and attains effective model selection. When one estimates the generalization error, one uses an unsupervised reference to constrain the complexity of the learning machine, thereby possibly decreasing sharply the number of admissible hypothesis. Although the methodology has a general value, the method described in the paper adopts vector quantization (VQ) as a representation paradigm, and introduces a biased regularization approach in bound computation and learning. Experimental results validate the proposed method on complex real-world data sets.
机译:设计学习机的关键问题是选择正确的模型参数。当可用样本的数量很少时,基于理论的基于样本的泛化边界可以证明是有效的,前提是它们必须严格并且可以正确跟踪验证错误。最大差异(MD)方法是用于支持向量机(SVM)的模型选择的一种非常有前途的技术,它可以通过对随机标记数据进行多次训练来估计分类器的泛化性能。本文提出了一种通用的方法来计算SVM的泛化边界,该方法基于将SVM参数引用到无监督的解决方案的基础上,并表明这种方法产生了严格的边界并获得了有效的模型选择。当人们估计泛化误差时,人们会使用无监督的引用来约束学习机的复杂性,从而可能急剧减少可容许假设的数量。尽管该方法具有通用价值,但本文描述的方法采用矢量量化(VQ)作为表示范例,并在绑定计算和学习中引入了有偏正则化方法。实验结果验证了该方法在复杂的真实世界数据集上的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号