首页> 外文期刊>Neural Networks, IEEE Transactions on >Recursive Bayesian Recurrent Neural Networks for Time-Series Modeling
【24h】

Recursive Bayesian Recurrent Neural Networks for Time-Series Modeling

机译:时间序列建模的递归贝叶斯递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg–Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
机译:本文为递归神经网络(RNN)的递归二阶训练开发了一种概率方法,以改进时间序列建模。导出了通用的递归贝叶斯Levenberg-Marquardt算法,以顺序更新权重和协方差(Hessian)矩阵。该方法的主要优点是对正则化超参数的原则性处理,可导致更好的泛化和稳定的数值性能。该框架涉及噪声超参数和局部权重先验超参数的适应,这些超参数表示数据中的噪声和模型参数中的不确定性。使用人工和现实世界数据集进行的实验研究表明,在时间序列建模方面,配备有建议的方法的RNN优于标准的实时递归学习和用于递归网络的扩展Kalman训练算法,以及其他当代的非线性神经模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号