首页> 外文期刊>Neural Networks, IEEE Transactions on >Nonlinear System Identification by Gustafson–Kessel Fuzzy Clustering and Supervised Local Model Network Learning for the Drug Absorption Spectra Process
【24h】

Nonlinear System Identification by Gustafson–Kessel Fuzzy Clustering and Supervised Local Model Network Learning for the Drug Absorption Spectra Process

机译:基于Gustafson-Kessel模糊聚类的非线性系统识别和受监督的局部模型网络学习,用于药物吸收光谱过程

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson–Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.
机译:本文在局部模型网络(LMN)的框架下,解决了模糊非线性模型辨识的问题。提出了一种新的迭代识别方法,将有监督和无监督学习相结合,以优化LMN的结构。为了使聚类中心适合过程的非线性,应用了Gustafsson-Kessel(GK)模糊聚类,即无监督学习。结合LMN学习过程,提出了一种新的增量方法来为GK聚类算法定义聚类中心的数量和初始位置。每个数据簇对应于过程的局部区域,并使用局部线性模型进行建模。由于有效性函数是从聚类的模糊协方差矩阵计算得出的,因此它们具有很高的适应性,因此可以使用非常稀疏的局部模型(即简约LMN模型)来描述该过程。最后,在药物吸收光谱过程中对提议的构建LMN的方法进行了测试,并与其他两种方法Lolomot和Hilomot进行了比较。使用每种方法的实验结果之间的比较表明了所提出的识别算法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号