首页> 外文期刊>Neural Networks, IEEE Transactions on >Binary Higher Order Neural Networks for Realizing Boolean Functions
【24h】

Binary Higher Order Neural Networks for Realizing Boolean Functions

机译:实现布尔函数的二进制高阶神经网络

获取原文
获取原文并翻译 | 示例

摘要

In order to more efficiently realize Boolean functions by using neural networks, we propose a binary product-unit neural network (BPUNN) and a binary pi-sigma neural network (BPSNN). The network weights can be determined by one-step training. It is shown that the addition “$sigma$,” the multiplication “$pi$,” and two kinds of special weighting operations in BPUNN and BPSNN can implement the logical operators “ $vee$,” “$wedge$,” and “$neg$” on Boolean algebra ${langle Z_{2},vee,wedge,neg,0,1rangle}~{(Z_{2}={0,1})}$, respectively. The proposed two neural networks enjoy the following advantages over the existing networks: 1) for a complete truth table of $N$ variables with both truth and false assignments, the corresponding Boolean function can be realized by accordingly choosing a BPUNN or a BPSNN such that at most $2^{N-1}$ hidden nodes are needed, while $O(2^{N})$, precisely $2^{N}$ or at most $2^{N}$, hidden nodes are needed by existing networks; 2) a new network BPUPS based on a collaboration of BPUNN and BPSNN can be defined to deal with incomplete truth tables, while the existing networks can only deal with complete truth tables; and 3) the values of the wei ghts are all simply ${-}{1}$ or 1, while the weights of all the existing networks are real numbers. Supporting numerical experiments are provided as well. Finally, we present the risk bounds of BPUNN, BPSNN, and BPUPS, and then analyze their probably approximately correct learnability.
机译:为了使用神经网络更有效地实现布尔函数,我们提出了二进制乘积单元神经网络(BPUNN)和二进制pi-sigma神经网络(BPSNN)。网络权重可以通过一步训练来确定。结果表明,BPUNN和BPSNN中的加法“ $ sigma $”,乘法“ $ pi $”以及两种特殊加权运算可以实现逻辑运算符“ $ vee $”,“ $ wedge $”和“布尔代数$ {langle Z_ {2},vee,wedge,neg,0,1rangle}〜{(Z_ {2} = {0,1})} $上的“ $ neg $”。所提出的两个神经网络相对于现有网络具有以下优点:1)对于具有真值和假值的$ N $变量的完整真值表,可以通过相应地选择BPUNN或BPSNN来实现相应的布尔函数,从而最多需要$ 2 ^ {N-1} $个隐藏节点,而$ O(2 ^ {N})$(正好是$ 2 ^ {N} $或最多$ 2 ^ {N} $)个现有节点需要隐藏节点网络; 2)可以定义基于BPUNN和BPSNN协作的新网络BPUPS来处理不完整的真值表,而现有网络只能处理完整的真值表;和3)重量的值都只是$ {-} {1} $或1,而所有现有网络的权重都是实数。还提供了支持的数值实验。最后,我们介绍了BPUNN,BPSNN和BPUPS的风险界限,然后分析了它们可能近似正确的可学习性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号