首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Boosted Network Classifiers for Local Feature Selection
【24h】

Boosted Network Classifiers for Local Feature Selection

机译:用于本地特征选择的增强型网络分类器

获取原文
获取原文并翻译 | 示例

摘要

Like all models, network feature selection models require that assumptions be made on the size and structure of the desired features. The most common assumption is sparsity, where only a small section of the entire network is thought to produce a specific phenomenon. The sparsity assumption is enforced through regularized models, such as the lasso. However, assuming sparsity may be inappropriate for many real-world networks, which possess highly correlated modules. In this paper, we illustrate two novel optimization strategies, namely, boosted expectation propagation (BEP) and boosted message passing (BMP), which directly use the network structure to estimate the parameters of a network classifier. BEP and BMP are ensemble methods that seek to optimize classification performance by combining individual models built upon local network features. Neither BEP nor BMP assumes a sparse solution, but instead they seek a weighted average of all network features where the weights are used to emphasize all features that are useful for classification. In this paper, we compare BEP and BMP with network-regularized logistic regression models on simulated and real biological networks. The results show that, where highly correlated network structure exists, assuming sparsity adversely effects the accuracy and feature selection power of the network classifier.
机译:像所有模型一样,网络特征选择模型要求对所需特征的大小和结构进行假设。最常见的假设是稀疏性,即整个网络中只有一小部分被认为会产生特定现象。稀疏性假设通过诸如套索之类的正规化模型来实施。但是,假设稀疏性可能不适用于许多具有高度相关模块的现实世界网络。在本文中,我们说明了两种新颖的优化策略,即增强期望传播(BEP)和增强消息传递(BMP),它们直接使用网络结构来估计网络分类器的参数。 BEP和BMP是通过结合基于本地网络功能构建的各个模型来寻求优化分类性能的集成方法。 BEP和BMP都不假设稀疏的解决方案,而是寻找所有网络功能的加权平均值,其中权重用于强调可用于分类的所有功能。在本文中,我们将BEP和BMP与模拟和真实生物网络上的网络正规logistic回归模型进行了比较。结果表明,在存在高度相关的网络结构的情况下,假设稀疏性会对网络分类器的准确性和特征选择能力产生不利影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号