首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Sparse Tensor Discriminant Color Space for Face Verification
【24h】

Sparse Tensor Discriminant Color Space for Face Verification

机译:用于面部验证的稀疏张量判别色空间

获取原文
获取原文并翻译 | 示例

摘要

As one of the fundamental features, color provides useful information and plays an important role for face recognition. Generally, the choice of a color space is different for different visual tasks. How can a color space be sought for the specific face recognition problem? To address this problem, we propose a sparse tensor discriminant color space (STDCS) model that represents a color image as a third-order tensor in this paper. The model cannot only keep the underlying spatial structure of color images but also enhance robustness and give intuitionistic or semantic interpretation. STDCS transforms the eigenvalue problem to a series of regression problems. Then one spare color space transformation matrix and two sparse discriminant projection matrices are obtained by applying lasso or elastic net on the regression problems. The experiments on three color face databases, AR, Georgia Tech, and Labeled Faces in the Wild face databases, show that both the performance and the robustness of the proposed method outperform those of the state-of-the-art TDCS model.
机译:作为基本特征之一,颜色可提供有用的信息,并在面部识别中起重要作用。通常,对于不同的视觉任务,颜色空间的选择是不同的。如何针对特定的面部识别问题寻找色彩空间?为了解决这个问题,我们提出了一种稀疏张量判别色彩空间(STDCS)模型,该模型将彩色图像表示为三阶张量。该模型不仅保留了彩色图像的潜在空间结构,而且还增强了鲁棒性并提供了直观或语义上的解释。 STDCS将特征值问题转换为一系列回归问题。然后通过对回归问题应用套索或弹性网,得到一个备用的色彩空间变换矩阵和两个稀疏的判别投影矩阵。在三个彩色人脸数据库(AR,乔治亚理工大学和Wild Face人脸数据库中的人脸)上进行的实验表明,该方法的性能和鲁棒性均优于最新的TDCS模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号