首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Nonlinear Projection Trick in Kernel Methods: An Alternative to the Kernel Trick
【24h】

Nonlinear Projection Trick in Kernel Methods: An Alternative to the Kernel Trick

机译:内核方法中的非线性投影技巧:内核技巧的替代方法

获取原文
获取原文并翻译 | 示例

摘要

In kernel methods such as kernel principal component analysis (PCA) and support vector machines, the so called kernel trick is used to avoid direct calculations in a high (virtually infinite) dimensional kernel space. In this brief, based on the fact that the effective dimensionality of a kernel space is less than the number of training samples, we propose an alternative to the kernel trick that explicitly maps the input data into a reduced dimensional kernel space. This is easily obtained by the eigenvalue decomposition of the kernel matrix. The proposed method is named as the nonlinear projection trick in contrast to the kernel trick. With this technique, the applicability of the kernel methods is widened to arbitrary algorithms that do not use the dot product. The equivalence between the kernel trick and the nonlinear projection trick is shown for several conventional kernel methods. In addition, we extend PCA-L1, which uses $L_{1}$-norm instead of $L_{2}$-norm (or dot product), into a kernel version and show the effectiveness of the proposed approach.
机译:在诸如内核主成分分析(PCA)和支持向量机之类的内核方法中,使用所谓的内核技巧来避免在高(虚拟无限)维内核空间中进行直接计算。在本摘要中,基于内核空间的有效维数小于训练样本数的事实,我们提出了一种内核技巧的替代方法,该技巧将输入数据显式映射到降维的内核空间中。这可以通过核矩阵的特征值分解轻松获得。与内核技巧相反,该方法被称为非线性投影技巧。通过这种技术,内核方法的适用性扩展到了不使用点积的任意算法。显示了几种常规核方法的核技巧与非线性投影技巧之间的等价关系。此外,我们将使用$ L_ {1} $-norm而不是$ L_ {2} $-norm(或点积)的PCA-L1扩展到内核版本,并证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号