首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions
【24h】

Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions

机译:在干扰,动态和功率转换器切换条件下控制并网整流器/逆变器的人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using backpropagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
机译:三相并网转换器广泛用于可再生和电力系统应用。传统上,并网转换器使用标准的解耦d-q矢量控制机制进行控制。但是,最近的研究表明,这种机制在其对动态系统的适用性方面显示出局限性。本文研究了如何使用神经网络控制并网整流器/逆变器来减轻这种限制。该神经网络实现了动态编程算法,并通过使用反向传播进行了训练。为了提高在干扰下的性能和稳定性,采用了其他策略,包括将误差信号积分用于网络输入,以及将电网干扰电压引入受过良好训练的网络的输出。在典型的矢量控制条件下研究了神经网络控制器的性能,并与传统的矢量控制方法进行了比较,证明了本文提出的神经矢量控制策略是有效的。即使在动态和功率转换器切换环境中,神经矢量控制器也具有跟踪快速变化的参考命令,容忍系统干扰并满足故障电力系统的控制要求的强大能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号