首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >T2FELA: Type-2 Fuzzy Extreme Learning Algorithm for Fast Training of Interval Type-2 TSK Fuzzy Logic System
【24h】

T2FELA: Type-2 Fuzzy Extreme Learning Algorithm for Fast Training of Interval Type-2 TSK Fuzzy Logic System

机译:T2FELA:用于间隔2型TSK模糊逻辑系统快速训练的2型模糊极限学习算法

获取原文
获取原文并翻译 | 示例

摘要

A challenge in modeling type-2 fuzzy logic systems is the development of efficient learning algorithms to cope with the ever increasing size of real-world data sets. In this paper, the extreme learning strategy is introduced to develop a fast training algorithm for interval type-2 Takagi–Sugeno–Kang fuzzy logic systems. The proposed algorithm, called type-2 fuzzy extreme learning algorithm (T2FELA), has two distinctive characteristics. First, the parameters of the antecedents are randomly generated and parameters of the consequents are obtained by a fast learning method according to the extreme learning mechanism. In addition, because the obtained parameters are optimal in the sense of minimizing the norm, the resulting fuzzy systems exhibit better generalization performance. The experimental results clearly demonstrate that the training speed of the proposed T2FELA algorithm is superior to that of the existing state-of-the-art algorithms. The proposed algorithm also shows competitive performance in generalization abilities.
机译:对2型模糊逻辑系统进行建模的一个挑战是开发高效的学习算法,以应对不断增长的现实世界数据集的规模。在本文中,引入了极限学习策略来开发区间2型Takagi–Sugeno–Kang模糊逻辑系统的快速训练算法。该算法被称为2型模糊极限学习算法(T2FELA),具有两个鲜明的特点。首先,根据极端学习机制,通过快速学习方法随机生成前因的参数,并由此获得后因的参数。另外,由于在最小化范数的意义上获得的参数是最佳的,因此所得的模糊系统表现出更好的泛化性能。实验结果清楚地表明,所提出的T2FELA算法的训练速度优于现有的最新算法。该算法在泛化能力上也表现出竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号