首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multistability and Instability of Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions
【24h】

Multistability and Instability of Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions

机译:具有不连续非单调分段线性激活函数的神经网络的多重稳定性和不稳定性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the coexistence and dynamical behaviors of multiple equilibrium points for recurrent neural networks with a class of discontinuous nonmonotonic piecewise linear activation functions. It is proved that under some conditions, such -neuron neural networks can have at least equilibrium points, of which are locally stable and the others are unstable, based on the contraction mapping theorem and the theory of strict diagonal dominance matrix. The investigation shows that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibrium points and more locally stable equilibrium points than the ones with continuous Mexican-hat-type activation function or discontinuous two-level activation functions. An illustrative example with computer simulations is presented to verify the theoretical analysis.
机译:在本文中,我们讨论了具有一类不连续非单调分段线性激活函数的递归神经网络的多个平衡点的共存和动力学行为。基于收缩映射定理和严格对角支配矩阵理论,证明了在一定条件下,这样的-neuron神经网络至少可以具有平衡点,其中平衡点是局部稳定的,而另一些则是不稳定的。研究表明,与具有连续墨西哥帽型激活函数或不连续两级激活函数的神经网络相比,本文引入的具有不连续激活函数的神经网络可以具有更多的总平衡点和更多的局部稳定平衡点。给出了带有计算机仿真的说明性示例,以验证理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号