首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fault Identification in Distributed Sensor Networks Based on Universal Probabilistic Modeling
【24h】

Fault Identification in Distributed Sensor Networks Based on Universal Probabilistic Modeling

机译:基于通用概率建模的分布式传感器网络故障识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a holistic modeling scheme for fault identification in distributed sensor networks. The proposed scheme is based on modeling the relationship between two datastreams by means of a hiddenMarkov model (HMM) trained on the parameters of linear time-invariant dynamic systems, which estimate the specific relationship over consecutive time windows. Every system state, including the nominal one, is represented by an HMM and the novel data are categorized according to the model producing the highest likelihood. The system is able to understand whether the novel data belong to the fault dictionary, are fault-free, or represent a new fault type. We extensively evaluated the discrimination capabilities of the proposed approach and contrasted it with a multilayer perceptron using data coming from the Barcelona water distribution network. Nine system states are present in the dataset and the recognition rates are provided in the confusion matrix form.
机译:提出了一种用于分布式传感器网络故障识别的整体建模方案。所提出的方案是基于通过对线性时不变动态系统的参数进行训练的隐马尔可夫模型(HMM)对两个数据流之间的关系进行建模而建立的,该模型在连续的时间窗口内估计特定的关系。每个系统状态(包括名义状态)都由HMM表示,并且根据产生最高似然性的模型对新数据进行分类。该系统能够了解新数据是属于故障字典,无故障还是代表新的故障类型。我们广泛评估了该方法的区分能力,并使用来自巴塞罗那供水网络的数据与多层感知器进行了对比。数据集中存在九个系统状态,以混淆矩阵形式提供识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号