首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Region-Based Object Recognition by Color Segmentation Using a Simplified PCNN
【24h】

Region-Based Object Recognition by Color Segmentation Using a Simplified PCNN

机译:使用简化的PCNN通过颜色分割进行基于区域的对象识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a region-based object recognition (RBOR) method to identify objects from complex real-world scenes. First, the proposed method performs color image segmentation by a simplified pulse-coupled neural network (SPCNN) for the object model image and test image, and then conducts a region-based matching between them. Hence, we name it as RBOR with SPCNN (SPCNN-RBOR). Hereinto, the values of SPCNN parameters are automatically set by our previously proposed method in terms of each object model. In order to reduce various light intensity effects and take advantage of SPCNN high resolution on low intensities for achieving optimized color segmentation, a transformation integrating normalized Red Green Blue (RGB) with opponent color spaces is introduced. A novel image segmentation strategy is suggested to group the pixels firing synchronously throughout all the transformed channels of an image. Based on the segmentation results, a series of adaptive thresholds, which is adjustable according to the specific object model is employed to remove outlier region blobs, form potential clusters, and refine the clusters in test images. The proposed SPCNN-RBOR method overcomes the drawback of feature-based methods that inevitably includes background information into local invariant feature descriptors when keypoints locate near object boundaries. A large number of experiments have proved that the proposed SPCNN-RBOR method is robust for diverse complex variations, even under partial occlusion and highly cluttered environments. In addition, the SPCNN-RBOR method works well in not only identifying textured objects, but also in less-textured ones, which significantly outperforms the current feature-based methods.
机译:在本文中,我们提出了一种基于区域的对象识别(RBOR)方法,用于从复杂的现实世界场景中识别对象。首先,该方法通过简化的脉冲耦合神经网络(SPCNN)对对象模型图像和测试图像进​​行彩色图像分割,然后在它们之间进行基于区域的匹配。因此,我们将其命名为SPCNN的RBOR(SPCNN-RBOR)。在此,SPCNN参数的值由我们先前提出的方法根据每个对象模型自动设置。为了减少各种光强度影响并利用低强度的SPCNN高分辨率来实现优化的颜色分割,引入了一种将归一化的红绿色蓝(RGB)与相对的颜色空间相结合的变换。提出了一种新颖的图像分割策略,以在整个图像的所有转换通道中对像素进行同步分组。根据分割结果,可以使用一系列可根据特定对象模型进行调整的自适应阈值,以去除异常区域斑点,形成潜在的簇并优化测试图像中的簇。提出的SPCNN-RBOR方法克服了基于特征的方法的缺点,当关键点位于对象边界附近时,该方法不可避免地将背景信息包含在局部不变特征描述符中。大量实验证明,即使在部分遮挡和高度混乱的环境下,所提出的SPCNN-RBOR方法对于各种复杂的变化也是稳健的。此外,SPCNN-RBOR方法不仅可以很好地识别纹理对象,而且还可以用于纹理较少的对象,这大大优于当前基于特征的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号