首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Maintaining the Integrity of Sources in Complex Learning Systems: Intraference and the Correlation Preserving Transform
【24h】

Maintaining the Integrity of Sources in Complex Learning Systems: Intraference and the Correlation Preserving Transform

机译:维护复杂学习系统中的源完整性:干扰和相关性保留变换

获取原文
获取原文并翻译 | 示例

摘要

The correlation preserving transform (CPT) is introduced to perform bivariate component analysis via decorrelating matrix decompositions, while at the same time preserving the integrity of original bivariate sources. Specifically, unlike existing bivariate uncorrelating matrix decomposition techniques, CPT is designed to preserve both the order of the data channels within every bivariate source and their mutual correlation properties. We introduce the notion of intraference to quantify the effects of interchannel mixing artifacts within recovered bivariate sources, and show that the integrity of separated sources is compromised when not accounting for the intrinsic correlations within bivariate sources, as is the case with current bivariate matrix decompositions. The CPT is based on augmented complex statistics and involves finding the correct conjugate eigenvectors associated with the pseudocovariance matrix, making it possible to maintain the physical meaning of the separated sources. The benefits of CPT are illustrated in the source separation and clustering scenarios, for both synthetic and real-world data.
机译:引入了相关保留变换(CPT),以通过去相关矩阵分解执行双变量成分分析,同时保留原始双变量源的完整性。具体而言,与现有的双变量不相关矩阵分解技术不同,CPT旨在保留每个双变量源中数据通道的顺序及其相互相关性。我们引入干扰的概念来量化恢复的双变量源中通道间混合伪像的影响,并表明当不考虑双变量源中的内在相关性时(如当前的双变量矩阵分解就是这种情况),分离的源的完整性会受到损害。 CPT基于增强的复杂统计量,并且涉及找到与伪协方差矩阵关联的正确共轭特征向量,从而有可能保持分离源的物理含义。对于合成数据和真实数据,在源分离和聚类方案中都说明了CPT的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号