首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Estimating Sensorimotor Mapping From Stimuli to Behaviors to Infer C. elegans Movements by Neural Transmission Ability Through Connectome Databases
【24h】

Estimating Sensorimotor Mapping From Stimuli to Behaviors to Infer C. elegans Movements by Neural Transmission Ability Through Connectome Databases

机译:通过连接组数据库的神经传递能力估计从感觉到行为的感应运动映射,以推断秀丽隐杆线虫运动。

获取原文
获取原文并翻译 | 示例

摘要

One of the ultimate goals of computational neuroscience is to quantitatively connect between complex neural circuits and behaviors. In the past decades, the touch response circuit in Caenorhabditis elegans (C. elegans) has extensively been investigated in studies using genetically modified or laser-ablated worms. Synaptic connections, including chemical and electrical synapses, have been identified for most neurons in the C. elegans. However, we still do not know whether the empirically observed touch responses can be derived from connectome reconstructed from databases. To address this issue, we defined the transmission abilities (or levels) of neurons in a rate model in order to infer the behaviors of wild-type and ablated worms in response to posteriorose/anterior touch stimuli. Our analysis showed that transmission abilities can be used to identify sensorimotor mapping from stimuli to movements and then to infer the C. elegans behaviors under simulations based on the perspective of decision-making, and provide useful information about how chemical and electronic synapses should be combined in the neural network movement analysis. This paper reveals an efficient tool that provided insights into the functions of complex neural circuits.
机译:计算神经科学的最终目标之一是在复杂的神经回路和行为之间进行定量连接。在过去的几十年中,秀丽隐杆线虫(秀丽隐杆线虫)中的触摸响应电路已在使用转基因或激光消融蠕虫的研究中得到了广泛研究。对于秀丽隐杆线虫中的大多数神经元,已经鉴定出突触连接,包括化学和电突触。但是,我们仍然不知道根据经验观察到的触摸反应是否可以从数据库重建的连接套中得出。为了解决这个问题,我们在速率模型中定义了神经元的传输能力(或水平),以推断野生型和消融蠕虫响应于后/鼻子/前触摸刺激的行为。我们的分析表明,传递能力可用于识别从刺激到运动的感觉运动映射,然后根据决策的角度在模拟下推断线虫的行为,并提供有关化学和电子突触应如何结合的有用信息在神经网络中运动分析。本文揭示了一种有效的工具,可提供对复杂神经回路功能的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号