首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming
【24h】

Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming

机译:利用自适应动态规划的车辆到网格网络公平能源调度

获取原文
获取原文并翻译 | 示例

摘要

Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs.
机译:由于智能电网在解决环境和能源危机方面具有重要意义,因此在全球范围内得到了巨大的支持。由清洁能源提供动力的电动汽车(EV)逐年增加。可以预见,由于较高的电动汽车普及率而导致的巨大充电负载将对智能电网的可靠性产生相当大的影响。因此,本文提出了电动汽车充放电的公平能源调度方法。通过使用车辆到电网技术,调度程序考虑到住宅配电网的公平性来控制电动汽车的电力负荷。我们提出了基于贡献的公平性,在这种公平性中,具有高贡献度的电动汽车具有获取充电能量的高优先级。贡献值由充电/放电能量和动作时间定义。在负载高峰时段放电时,电动汽车可以获得更高的贡献值。但是,在此期间充电将严重降低贡献值。我们将公平能源调度问题表述为无限地平线马尔可夫决策过程。通过处理在线网络训练,采用自适应动态规划的方法来最大化长期公平性。数值结果表明,提出的电动汽车能量调度能够减轻和扁平化配电网络中的峰值负荷。此外,基于贡献的公平性可以使深度放电的EV电池快速恢复,并保证所有EV充满电时的公平性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号