首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Bayesian Robust Tensor Factorization for Incomplete Multiway Data
【24h】

Bayesian Robust Tensor Factorization for Incomplete Multiway Data

机译:不完全多路数据的贝叶斯鲁棒张量分解

获取原文
获取原文并翻译 | 示例

摘要

We propose a generative model for robust tensor factorization in the presence of both missing data and outliers. The objective is to explicitly infer the underlying low-CANDECOMP/PARAFAC (CP)-rank tensor capturing the global information and a sparse tensor capturing the local information (also considered as outliers), thus providing the robust predictive distribution over missing entries. The low-CP-rank tensor is modeled by multilinear interactions between multiple latent factors on which the column sparsity is enforced by a hierarchical prior, while the sparse tensor is modeled by a hierarchical view of Student- distribution that associates an individual hyperparameter with each element independently. For model learning, we develop an efficient variational inference under a fully Bayesian treatment, which can effectively prevent the overfitting problem and scales linearly with data size. In contrast to existing related works, our method can perform model selection automatically and implicitly without the need of tuning parameters. More specifically, it can discover the groundtruth of CP rank and automatically adapt the sparsity inducing priors to various types of outliers. In addition, the tradeoff between the low-rank approximation and the sparse representation can be optimized in the sense of maximum model evidence. The extensive experiments and comparisons with many state-of-the-art algorithms on both synthetic and real-world data sets demonstrate the superiorities of our method from several perspectives.
机译:我们提出了一种在缺少数据和离群值的情况下鲁棒张量分解的生成模型。目的是显式推断捕获全局信息的底层低CANDECOMP / PARAFAC(CP)秩张量和捕获局部信息的稀疏张量(也称为离群值),从而在缺失条目上提供可靠的预测分布。低CP秩张量由多个潜在因素之间的多线性交互作用建模,列稀疏性由分层先验对其施加,而稀疏张量由学生分布的分层视图建模,该视图将单个超参数与每个元素相关联独立地。对于模型学习,我们在完全贝叶斯处理下开发了有效的变分推理,可以有效地防止过拟合问题并随数据大小线性扩展。与现有的相关工作相反,我们的方法可以自动隐式地执行模型选择,而无需调整参数。更具体地说,它可以发现CP等级的真实性,并自动使稀疏诱导先验适应各种类型的异常值。另外,在最大模型证据的意义上,可以优化低秩近似与稀疏表示之间的折衷。在综合和真实数据集上进行的大量实验和与许多最新算法的比较,从多个角度证明了我们方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号