首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network
【24h】

Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network

机译:基于自组织递归神经网络的非线性模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
机译:基于自组织递归径向基函数(SR-RBF)神经网络,提出了一种非线性模型预测控制(NMPC)方案,在训练过程中可以同时调整其结构和参数。所提出的SR-RBF神经网络以一般的非线性形式表示,用于预测非线性系统的未来动态行为。为了提高建模精度,开发了基于尖峰的修剪算法和自适应学习算法分别调整SR-RBF神经网络的结构和参数。同时,针对控制问题,采用改进的梯度法求解NMPC中的优化问题。基于Lyapunov稳定性理论证明了所得控制系统的稳定性。最后,提出的基于SR-RBF神经网络的NMPC(SR-RBF-NMPC)用于控制废水处理过程(WWTP)中的溶解氧(DO)浓度。与其他现有方法的比较表明,SR-RBF-NMPC可以实现对WWTP的更好的模型拟合和对DO浓度的更好的控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号