首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features With Structure Preservation on 3-D Meshes
【24h】

Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features With Structure Preservation on 3-D Meshes

机译:网格卷积受限Boltzmann机器,用于在3D网格上保留结构的特征的无监督学习

获取原文
获取原文并翻译 | 示例

摘要

Discriminative features of 3-D meshes are significant to many 3-D shape analysis tasks. However, handcrafted descriptors and traditional unsupervised 3-D feature learning methods suffer from several significant weaknesses: 1) the extensive human intervention is involved; 2) the local and global structure information of 3-D meshes cannot be preserved, which is in fact an important source of discriminability; 3) the irregular vertex topology and arbitrary resolution of 3-D meshes do not allow the direct application of the popular deep learning models; 4) the orientation is ambiguous on the mesh surface; and 5) the effect of rigid and nonrigid transformations on 3-D meshes cannot be eliminated. As a remedy, we propose a deep learning model with a novel irregular model structure, called mesh convolutional restricted Boltzmann machines (MCRBMs). MCRBM aims to simultaneously learn structure-preserving local and global features from a novel raw representation, local function energy distribution. In addition, multiple MCRBMs can be stacked into a deeper model, called mesh convolutional deep belief networks (MCDBNs). MCDBN employs a novel local structure preserving convolution (LSPC) strategy to convolve the geometry and the local structure learned by the lower MCRBM to the upper MCRBM. LSPC facilitates resolving the challenging issue of the orientation ambiguity on the mesh surface in MCDBN. Experiments using the proposed MCRBM and MCDBN were conducted on three common aspects: global shape retrieval, partial shape retrieval, and shape correspondence. Results show that the features learned by the proposed methods outperform the other state-of-the-art 3-D shape features.
机译:3-D网格的区别特征对于许多3-D形状分析任务很重要。但是,手工制作的描述符和传统的无监督3D特征学习方法存在几个明显的缺点:1)涉及到大量的人工干预; 2)无法保存3-D网格的局部和全局结构信息,这实际上是可分辨性的重要来源; 3)不规则的顶点拓扑和3D网格的任意分辨率不允许直接应用流行的深度学习模型; 4)网格表面方向不明确; 5)不能消除3D网格上刚性和非刚性变换的影响。作为一种补救措施,我们提出了一种具有新型不规则模型结构的深度学习模型,称为网状卷积受限玻尔兹曼机(MCRBM)。 MCRBM旨在从新颖的原始表示,局部函数能量分布中同时学习保留结构的局部和全局特征。此外,可以将多个MCRBM堆叠到一个更深的模型中,称为网格卷积深度置信网络(MCDBN)。 MCDBN采用一种新颖的局部结构保留卷积(LSPC)策略,将下层MCRBM学习到的几何形状和局部结构卷积到上层MCRBM。 LSPC有助于解决MCDBN中网格表面定向模糊性的难题。使用提出的MCRBM和MCDBN进行的实验是在三个常见方面进行的:整体形状检索,部分形状检索和形状对应。结果表明,所提方法学习的特征优于其他最新的3D形状特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号