首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics
【24h】

Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics

机译:多目标深度信念网络相结合,以在预测学中保留有用的寿命

获取原文
获取原文并翻译 | 示例

摘要

In numerous industrial applications where safety, efficiency, and reliability are among primary concerns, condition-based maintenance (CBM) is often the most effective and reliable maintenance policy. Prognostics, as one of the key enablers of CBM, involves the core task of estimating the remaining useful life (RUL) of the system. Neural networks-based approaches have produced promising results on RUL estimation, although their performances are influenced by handcrafted features and manually specified parameters. In this paper, we propose a multiobjective deep belief networks ensemble (MODBNE) method. MODBNE employs a multiobjective evolutionary algorithm integrated with the traditional DBN training technique to evolve multiple DBNs simultaneously subject to accuracy and diversity as two conflicting objectives. The eventually evolved DBNs are combined to establish an ensemble model used for RUL estimation, where combination weights are optimized via a single-objective differential evolution algorithm using a task-oriented objective function. We evaluate the proposed method on several prognostic benchmarking data sets and also compare it with some existing approaches. Experimental results demonstrate the superiority of our proposed method.
机译:在安全,效率和可靠性是首要考虑因素的众多工业应用中,基于状态的维护(CBM)通常是最有效,最可靠的维护策略。作为CBM的关键推动因素之一,预测技术涉及估算系统剩余使用寿命(RUL)的核心任务。基于神经网络的方法在RUL估计上产生了可喜的结果,尽管其性能受手工功能和手动指定参数的影响。在本文中,我们提出了一种多目标深度信念网络集成(MODBNE)方法。 MODBNE采用与传统DBN训练技术集成的多目标进化算法,以同时满足两个冲突目标的准确性和多样性的要求同时进化多个DBN。最终演化的DBN被组合以建立用于RUL估计的集成模型,其中组合权重是通过使用面向任务的目标函数的单目标差分演化算法进行优化的。我们在几种预后基准数据集上评估了该方法,并将其与一些现有方法进行了比较。实验结果证明了我们提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号