首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Clustering Through Hybrid Network Architecture With Support Vectors
【24h】

Clustering Through Hybrid Network Architecture With Support Vectors

机译:通过带有支持向量的混合网络体系结构进行聚类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a clustering algorithm based on a two-phased neural network architecture. We combine the strength of an autoencoderlike network for unsupervised representation learning with the discriminative power of a support vector machine (SVM) network for fine-tuning the initial clusters. The first network is referred as prototype encoding network, where the data reconstruction error is minimized in an unsupervised manner. The second phase, i.e., SVM network, endeavors to maximize the margin between cluster boundaries in a supervised way making use of the first output. Both the networks update the cluster centroids successively by establishing a topology preserving scheme like self-organizing map on the latent space of each network. Cluster fine-tuning is accomplished in a network structure by the alternate usage of the encoding part of both the networks. In the experiments, challenging data sets from two popular repositories with different patterns, dimensionality, and the number of clusters are used. The proposed hybrid architecture achieves comparatively better results both visually and analytically than the previous neural network-based approaches available in the literature.
机译:在本文中,我们提出了一种基于两阶段神经网络架构的聚类算法。我们将用于无监督表示学习的类似自动编码器的网络的强度与用于对初始集群进行微调的支持向量机(SVM)网络的判别能力相结合。第一个网络称为原型编码网络,其中数据重构错误以无监督的方式最小化。第二阶段,即SVM网络,试图利用第一输出以有监督的方式使簇边界之间的余量最大化。两个网络都通过在每个网络的潜在空间上建立诸如自组织映射之类的拓扑保留方案来连续更新群集质心。通过交替使用两个网络的编码部分,可以在网络结构中完成群集的微调。在实验中,使用了来自两个流行存储库的具有挑战性的数据集,这些存储库具有不同的模式,维数和簇数。所提出的混合体系结构在视觉和分析上都比文献中现有的基于神经网络的方法可获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号