首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks
【24h】

Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks

机译:基于递归神经网络的铁路轨道电路故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available measurement signals. By considering the signals from multiple track circuits in a geographic area, faults are diagnosed from their spatial and temporal dependences. A generative model is used to show that the LSTM network can learn these dependences directly from the data. The network correctly classifies 99.7% of the test input sequences, with no false positive fault detections. In addition, the t-Distributed Stochastic Neighbor Embedding (t-SNE) method is used to examine the resulting network, further showing that it has learned the relevant dependences in the data. Finally, we compare our LSTM network with a convolutional network trained on the same task. From this comparison, we conclude that the LSTM network architecture is better suited for the railway track circuit fault detection and identification tasks than the convolutional network.
机译:及时检测和识别铁路轨道电路中的故障对于铁路网络的安全性和可用性至关重要。在本文中,提出了使用长期短期记忆(LSTM)递归神经网络来基于常见的测量信号来完成这些任务。通过考虑来自某个地理区域中多个跟踪电路的信号,可以从故障的空间和时间依赖性中诊断故障。生成模型用于表明LSTM网络可以直接从数据中学习这些依赖性。网络正确分类了99.7%的测试输入序列,没有错误的肯定故障检测。此外,使用t分布随机邻居嵌入(t-SNE)方法检查生成的网络,进一步表明它已经了解了数据中的相关依赖性。最后,我们将LSTM网络与经过相同任务训练的卷积网络进行比较。通过比较,我们得出结论,与卷积网络相比,LSTM网络体系结构更适合铁路轨道电路故障检测和识别任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号