机译:支持向量机的基于距离的加权欠采样方案及其在不平衡分类中的应用
Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai, China;
Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai, China;
Institute of Systems Engineering, Macau University of Science and Technology, Macau, China;
Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai, China;
Department of Control Science and Engineering, School of Electronics and Information Engineering, Tongji University, Shanghai, China;
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA;
Support vector machines; Kernel; Euclidean distance; Training; Learning systems; Machine learning algorithms; Optimization;
机译:基于聚类的欠采样,随机过采样示例和支持向量机,用于乳腺癌诊断的不平衡分类
机译:用于不平衡数据分类的有效加权多类最小二乘双支持向量机
机译:用于不平衡数据分类的高效加权拉格朗日双支持向量机
机译:高度不平衡数据分类的几何空间支持向量机集合中的聚类和加权评分
机译:解决支持向量机分类问题及其在供应商选择中的应用。
机译:研究与应用:用于可扩展程序和诊断分类的N-gram支持向量机适用于重症监护室的临床免费文本数据
机译:几何空间支持矢量机组集群和加权评分用于高度不平衡数据分类