...
首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Demystifying Deep Learning in Predictive Spatiotemporal Analytics: An Information-Theoretic Framework
【24h】

Demystifying Deep Learning in Predictive Spatiotemporal Analytics: An Information-Theoretic Framework

机译:预测时空分析中的深入学习:信息理论框架

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Deep learning has achieved incredible success over the past years, especially in various challenging predictive spatiotemporal analytics (PSTA) tasks, such as disease prediction, climate forecast, and traffic prediction, where intrinsic dependence relationships among data exist and generally manifest at multiple spatiotemporal scales. However, given a specific PSTA task and the corresponding data set, how to appropriately determine the desired configuration of a deep learning model, theoretically analyze the model's learning behavior, and quantitatively characterize the model's learning capacity remains a mystery. In order to demystify the power of deep learning for PSTA in a theoretically sound and explainable way, in this article, we provide a comprehensive framework for deep learning model design and information-theoretic analysis. First, we develop and demonstrate a novel interactively and integratively connected deep recurrent neural network ((IDRNN)-D-2) model. (IDRNN)-D-2 consists of three modules: an input module that integrates data from heterogeneous sources; a hidden module that captures the information at different scales while allowing the information to flow interactively between layers; and an output module that models the integrative effects of information from various hidden layers to generate the output predictions. Second, to theoretically prove that our designed model can learn multiscale spatiotemporal dependence in PSTA tasks, we provide an information-theoretic analysis to examine the information-based learning capacity (i-CAP) of the proposed model. In so doing, we can tackle an important open question in deep learning, that is, how to determine the necessary and sufficient configurations of a designed deep learning model with respect to the given learning data sets. Third, to validate the (IDRNN)-D-2 model and confirm its i-CAP, we systematically conduct a series of experiments involving both synthetic data sets and real-world PSTA tasks. The experimental results show that the (IDRNN)-D-2 model outperforms both classical and state-of-the-art models on all data sets and PSTA tasks. More importantly, as readily validated, the proposed model captures the multiscale spatiotemporal dependence, which is meaningful in the real-world context. Furthermore, the model configuration that corresponds to the best performance on a given data set always falls into the range between the necessary and sufficient configurations, as derived from the information-theoretic analysis.
机译:在过去几年中,深入学习取得了令人难以置信的成功,特别是在各种挑战性的预测性时滞分析(PSTA)任务中,例如疾病预测,气候预测和交通预测,数据存在的内在依赖关系,并且通常在多个时空尺度上显现出来。然而,给定特定的PSTA任务和相应的数据集,如何适当地确定深度学习模型的所需配置,理论上分析模型的学习行为,并且定量表征模型的学习能力仍然是一个谜。为了以理论上声音和解释的方式揭开PSTA深度学习的力量,在本文中,我们为深度学习模型设计和信息理论分析提供了全面的框架。首先,我们开发和展示一种独立和完全连接的深度复发性神经网络((IDRNN)-2)模型的新颖。 (IDRNN)-D-2由三个模块组成:输入模块,用于集成来自异构来源的数据;一个隐藏的模块,捕获不同尺度的信息,同时允许信息在层之间交互方式流动;和一个输出模块,用于模拟来自各种隐藏层的信息的集成效果以生成输出预测。其次,理论上证明我们所设计的模型可以在PSTA任务中学习MultiScale时空依赖,我们提供了一种信息 - 理论分析,以检查所提出的模型的信息的学习能力(I-CAP)。在这样做时,我们可以在深度学习中解决一个重要的开放问题,即如何确定关于给定的学习数据集的设计深度学习模型的必要和充分配置。第三,要验证(IDRNN)-D-2模型并确认其I帽,我们系统地开展一系列涉及合成数据集和现实世界PSTA任务的实验。实验结果表明,(IDRNN)-D-2模型在所有数据集和PSTA任务中占据了经典和最先进的模型。更重要的是,如容易验证的那样,所提出的模型捕获了多尺度的时空依赖,这在真实世界中有意义。此外,与给定数据集上的最佳性能对应的模型配置总是落入必要和充分的配置之间的范围,从信息定理分析导出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号