首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Reinforcement Learning With Task Decomposition for Cooperative Multiagent Systems
【24h】

Reinforcement Learning With Task Decomposition for Cooperative Multiagent Systems

机译:与合作多算系统的任务分解的加强学习

获取原文
获取原文并翻译 | 示例

摘要

In this article, we study cooperative multiagent systems (MASs) with multiple tasks by using reinforcement learning (RL)-based algorithms. The target for a single-agent RL system is represented by its scalar reward signals. However, for an MAS with multiple cooperative tasks, the holistic reward signal consists of multiple parts to represent the tasks, which makes the problem complicated. Existing multiagent RL algorithms search distributed policies with holistic reward signals directly, making it difficult to obtain an optimal policy for each task. This article provides efficient learning-based algorithms such that each agent can learn a joint optimal policy to accomplish these multiple tasks cooperatively with other agents. The main idea of the algorithms is to decompose the holistic reward signal for each agent into multiple parts according to the subtasks, and then the proposed algorithms learn multiple value functions with the decomposed reward signals and update the policy with the sum of distributed value functions. In addition, this article presents a theoretical analysis of the proposed approach. Finally, the simulation results for both discrete decision-making and continuous control problems have demonstrated the effectiveness of the proposed algorithms.
机译:在本文中,我们通过使用加强学习(RL)的算法研究了具有多个任务的合作多算系统(质量)。单个代理RL系统的目标由其标量奖励信号表示。然而,对于具有多种合作任务的MAS,整体奖励信号包括多个部分来表示任务,这使得问题复杂。现有的MultiaGent RL算法直接搜索具有整体奖励信号的分布式策略,使得难以获得每个任务的最佳策略。本文提供了高效的基于学习的算法,使得每个代理商可以学习联合最佳政策,以便与其他代理商协同地完成这些多项任务。算法的主要思想是根据子任务将每个代理的整体奖励信号分解为多个部分,然后提出的算法使用分解奖励信号的多个值函数,并通过分布式值函数的和更新策略。此外,本文提出了对拟议方法的理论分析。最后,对离散决策和连续控制问题的仿真结果表明了所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号