首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >CAME: Content- and Context-Aware Music Embedding for Recommendation
【24h】

CAME: Content- and Context-Aware Music Embedding for Recommendation

机译:来了:嵌入建议的内容和上下文感知音乐

获取原文
获取原文并翻译 | 示例

摘要

Traditional recommendation methods suffer from limited performance, which can be addressed by incorporating abundant auxiliary/side information. This article focuses on a personalized music recommender system that incorporates rich content and context data in a unified and adaptive way to address the abovementioned problems. The content information includes music textual content, such as metadata, tags, and lyrics, and the context data incorporate users' behaviors, including music listening records, music playing sequences, and sessions. Specifically, a heterogeneous information network (HIN) is first presented to incorporate different kinds of content and context data. Then, a novel method called content- and context-aware music embedding (CAME) is proposed to obtain the low-dimension dense real-valued feature representations (embeddings) of music pieces from HIN. Especially, one music piece generally highlights different aspects when interacting with various neighbors, and it should have different representations separately. CAME seamlessly combines deep learning techniques, including convolutional neural networks and attention mechanisms, with the embedding model to capture the intrinsic features of music pieces as well as their dynamic relevance and interactions adaptively. Finally, we further infer users' general musical preferences as well as their contextual preferences for music and propose a content- and context-aware music recommendation method. Comprehensive experiments as well as quantitative and qualitative evaluations have been performed on real-world music data sets, and the results show that the proposed recommendation approach outperforms state-of-the-art baselines and is able to handle sparse data effectively.
机译:传统推荐方法具有有限的性能,可以通过纳入丰富的辅助/侧信息来解决。本文侧重于个性化的音乐推荐系统,以统一和自适应方式包含丰富的内容和上下文数据来解决上述问题。内容信息包括音乐文本内容,例如元数据,标签和歌词,上下文数据包含用户的行为,包括音乐收听记录,音乐播放序列和会话。具体地,首先呈现异构信息网络(HIN)以结合不同类型的内容和上下文数据。然后,提出了一种新的方法,称为内容和上下文感知的音乐嵌入(来自),以获得来自HIN的音乐件的低维度密集的真实值特征表示(嵌入)。特别是,一个音乐件通常在与各种邻居交互时突出显示不同的方面,并且它应该单独具有不同的表示。无缝地结合了深度学习技术,包括卷积神经网络和注意机制,嵌入模型捕获音乐件的内在特征以及自适应的动态相关性和交互。最后,我们进一步推断用户的一般音乐偏好以及它们对音乐的上下文偏好,并提出了一种内容和背景感知的音乐推荐方法。在现实世界音乐数据集上进行了综合实验以及定量和定性评估,结果表明,拟议的推荐方法优于最先进的基线,能够有效处理稀疏数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号