首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Scene Graph Generation With Hierarchical Context
【24h】

Scene Graph Generation With Hierarchical Context

机译:场景图生成与分层上下文

获取原文
获取原文并翻译 | 示例

摘要

Scene graph generation has received increasing attention in recent years. Enhancing the predicate representations is an important entry point to this task. There are various methods to fully investigate the context of representation enhancement. In this brief, we analyze the decisive factors that can significantly affect the relation detection results. Our analysis shows that spatial correlations between objects, focused regions of objects, and global hints related to the relations have strong influences in relation prediction and contradiction elimination. Based on our analysis, we propose a hierarchical context network (HCNet) to generate a scene graph. HCNet consists of three contexts, including interaction context, depression context, and global context, which integrates information from pair, object, and graph levels. The experiments show that our method outperforms the state-of-the-art methods on the Visual Genome (VG) data set.
机译:近年来,场景图一代已收到越来越多的关注。增强谓词表示是此任务的一个重要的入口点。有各种方法可以完全调查表示增强的背景。在此简介中,我们分析了可以显着影响关系检测结果的决定性因素。我们的分析表明,对象,对象区域之间的空间相关性,与关系相关的全球提示具有强烈的关系预测和矛盾消除。根据我们的分析,我们提出了一个分层上下文网络(HCNet)来生成场景图。 HCNET由三个上下文组成,包括交互上下文,抑郁型上下文和全局上下文,其集成了来自对,对象和图形级别的信息。实验表明,我们的方法优于视觉基因组(VG)数据集上的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号