首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition
【24h】

Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition

机译:中风序列依赖性深度卷积神经网络,用于在线手写汉字识别

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel model, called stroke sequencedependent deep convolutional neural network (SSDCNN), which uses the stroke sequence information and eight- directional features of Chinese characters for online handwritten Chinese character recognition (OLHCCR). SSDCNN learns the representation of OLHCCs by incorporating the natural sequence information of the strokes. Furthermore, it naturally incorporates the eightdirectional features. First, SSDCNN inputs the stroke sequence and transforms it into stacks of feature maps following the writing order of the strokes. Second, the fixed-length, stroke sequencedependent representations of OLHCC are derived through convolutional, residual, and max-pooling operations. Third, the stroke sequence-dependent representation is combined with the eightdirectional features via a number of fully connected neural network layers. Finally, the Chinese characters are recognized using a softmax classifier. The SSDCNN is trained in two stages: 1) the whole architecture is pretrained using the training data until the performance converges to an acceptable degree. 2) The stroke sequence-dependent representation is combined with the eight-directional features by a fully connected neural network and a softmax layer for further training. The model was experimentally evaluated on the OLHCCR competition tasks of International Conference on Document Analysis and Recognition (ICDAR) 2013. The recognition error was a maximum 58.28% lower in SSDCNN than in a model using the eight-directional features alone (5.13% versus 2.14%). Owing to its high accuracy (97.86%), the proposed SSDCNN reduced the recognition error by approximately 18.0% as compared with that of the winning system in the ICDAR 2013 competition. SSDCNN integrated with an adaptation mechanism, called the SSDCNN+Adapt model, and reached a new state-of-the-art (SOTA) standard with an accuracy of 97.94%. The SSDCNN exploits the stroke sequence information to learn high-quality OLHCC representations. Moreover, the learned representation and the classical eight-directional features complement each other within the SSDCNN architecture.
机译:我们提出了一种新颖的模型,称为笔划搜索依存深卷积神经网络(SSDCNN),它使用中风序列信息和汉字的八个方向特征来用于在线手写的汉字识别(OLHCCR)。 SSDCNN通过结合笔触的自然序列信息来了解OLHCC的表示。此外,它自然地包含了八条转向特征。首先,SSDCNN输入笔划序列,并按照笔划的写入顺序后将其转换为特征映射的堆栈。其次,通过卷积,残差和最大池操作导出OLHCC的固定长度,中风测定依存表示。第三,笔划序列依赖性表示通过多个完全连接的神经网络层与八维二维特征组合。最后,使用SoftMax分类器识别汉字。 SSDCNN在两个阶段接受培训:1)整个架构使用训练数据预先磨削,直到性能会聚到可接受的程度。 2)中风序列依赖性表示与通过完全连接的神经网络和软MAX层的八个方向特征组合以进行进一步训练。该模型对2013年的国际会议国际会议OLHCCR竞争任务进行了实验评估。识别误差在SSDCNN中最多58.28%,而不是使用八个方向特征的模型(5.13%对2.14 %)。由于其高精度(97.86%),所提出的SSDCNN将识别误差减少约18.0%,而互联网2013年竞争中的获奖系统相比。 SSDCNN集成了一种调整机制,称为SSDCNN +适应模型,并达到了新的最先进(SOTA)标准,精度为97.94%。 SSDCNN利用笔划序列信息来学习高质量的OLHCC表示。此外,学习的表示和古典八个方向特征在SSDCNN架构中彼此相互补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号