首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Exact Passive-Aggressive Algorithms for Ordinal Regression Using Interval Labels
【24h】

Exact Passive-Aggressive Algorithms for Ordinal Regression Using Interval Labels

机译:使用间隔标签进行序数回归的确切被动攻击算法

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose exact passive-aggressive (PA) online algorithms for ordinal regression. The proposed algorithms can be used even when we have interval labels instead of actual labels for example. The proposed algorithms solve a convex optimization problem at every trial. We find an exact solution to those optimization problems to determine the updated parameters. We propose a support class algorithm (SCA) that finds the active constraints using the Karush-Kuhn-Tucker (KKT) conditions of the optimization problems. These active constraints form a support set, which determines the set of thresholds that need to be updated. We derive update rules for PA, PA-I, and PA-II. We show that the proposed algorithms maintain the ordering of the thresholds after every trial. We provide the mistake bounds of the proposed algorithms in both ideal and general settings. We also show experimentally that the proposed algorithms successfully learn accurate classifiers using interval labels as well as exact labels. The proposed algorithms also do well compared to other approaches.
机译:在本文中,我们提出了对序数回归的精确被动攻击(PA)在线算法。即使在我们具有间隔标签而不是实际标签时,也可以使用所提出的算法。所提出的算法在每次试验时解决了凸优化问题。我们为这些优化问题找到了精确的解决方案以确定更新的参数。我们提出了一种支持类算法(SCA),该算法(SCA)使用优化问题的Karush-Kuhn-Tucker(KKT)条件找到活动约束。这些活动约束形成支持集,该支持集确定了需要更新的阈值集合。我们派生了PA,PA-I和PA-II的更新规则。我们表明所提出的算法在每次试验后维持阈值的排序。我们在理想和一般设置中提供所提出的算法的错误界限。我们还通过实验显示所提出的算法使用间隔标签以及确切的标签来成功学习准确的分类器。与其他方法相比,所提出的算法也很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号