首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Discrete Deep Hashing With Ranking Optimization for Image Retrieval
【24h】

Discrete Deep Hashing With Ranking Optimization for Image Retrieval

机译:离散深度散列与图像检索的排名优化

获取原文
获取原文并翻译 | 示例

摘要

For large-scale image retrieval task, a hashing technique has attracted extensive attention due to its efficient computing and applying. By using the hashing technique in image retrieval, it is crucial to generate discrete hash codes and preserve the neighborhood ranking information simultaneously. However, both related steps are treated independently in most of the existing deep hashing methods, which lead to the loss of key category-level information in the discretization process and the decrease in discriminative ranking relationship. In order to generate discrete hash codes with notable discriminative information, we integrate the discretization process and the ranking process into one architecture. Motivated by this idea, a novel ranking optimization discrete hashing (RODH) method is proposed, which directly generates discrete hash codes (e.g., +1/-1) from raw images by balancing the effective category-level information of discretization and the discrimination of ranking information. The proposed method integrates convolutional neural network, discrete hash function learning, and ranking function optimizing into a unified framework. Meanwhile, a novel loss function based on label information and mean average precision (MAP) is proposed to preserve the label consistency and optimize the ranking information of hash codes simultaneously. Experimental results on four benchmark data sets demonstrate that RODH can achieve superior performance over the state-of-the-art hashing methods.
机译:对于大规模的图像检索任务,由于其有效的计算和应用,散列技术引起了广泛的关注。通过使用图像检索中的散列技术,它至关重要,以产生离散哈希代码并同时保留邻域排名信息。然而,两个相关步骤都在大多数现有的深度散列方法中独立处理,这导致在离散化过程中失去关键类别级信息和判别排名关系的降低。为了产生具有显着辨别信息的离散哈希码,我们将离散化进程和排名进程集成到一个架构中。提出了一种新的思想,提出了一种新的排名优化离散散列(RODH)方法,通过平衡离散化的有效类别级信息和辨别来直接从原始图像产生离散哈希代码(例如,+ 1 / -1)排名信息。该方法集成了卷积神经网络,离散哈希函数学习和排序功能优化到统一的框架中。同时,提出了一种基于标签信息和平均精度(MAP)的新颖损失函数,以保持标签一致性并同时优化哈希代码的排名信息。四个基准数据集的实验结果表明,RODH可以通过最先进的散列方法实现卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号