首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Knowledge-Driven Deep Unrolling for Robust Image Layer Separation
【24h】

Knowledge-Driven Deep Unrolling for Robust Image Layer Separation

机译:知识驱动的深度展开,用于鲁棒图像层分离

获取原文
获取原文并翻译 | 示例

摘要

Single-image layer separation targets to decompose the observed image into two independent components in terms of different application demands. It is known that many vision and multimedia applications can be (re)formulated as a separation problem. Due to the fundamentally ill-posed natural of these separations, existing methods are inclined to investigate model priors on the separated components elaborately. Nevertheless, it is knotty to optimize the cost function with complicated model regularizations. Effectiveness is greatly conceded by the settled iteration mechanism, and the adaption cannot be guaranteed due to the poor data fitting. What is more, for a universal framework, the most taxing point is that one type of visual cue cannot be shared with different tasks. To partly overcome the weaknesses mentioned earlier, we delve into a generic optimization unrolling technique to incorporate deep architectures into iterations for adaptive image layer separation. First, we propose a general energy model with implicit priors, which is based on maximum a posterior, and employ the extensively accepted alternating direction method of multiplier to determine our elementary iteration mechanism. By unrolling with one general residual architecture prior and one task-specific prior, we attain a straightforward, flexible, and data-dependent image separation framework successfully. We apply our method to four different tasks, including single-image-rain streak removal, high-dynamic-range tone mapping, low-light image enhancement, and single-image reflection removal. Extensive experiments demonstrate that the proposed method is applicable to multiple tasks and outperforms the state of the arts by a large margin qualitatively and quantitatively.
机译:单像层分离目标以在不同的应用需求方面将观察图像分解为两个独立组件。众所周知,许多视觉和多媒体应用可以(重新)作为分离问题。由于这些分离的基本不均匀的自然,现有方法倾向于在精心制作的分离组分上调查模型前导者。尽管如此,它很好地优化了复杂的模型规范化的成本函数。稳定迭代机制大大承认有效性,由于数据配件差,无法保证适应。更重要的是,对于普遍框架,最征税点是一种类型的视觉提示不能与不同的任务共享。为了部分地克服前面提到的弱点,我们深入研究了一种通用的优化展开技术,将深层架构融入自适应图像层分离的迭代中。首先,我们提出了一种具有隐式前锋的一般能量模型,基于最大后的后部,并且采用广泛接受的乘法器的交替方向方法来确定我们的基本迭代机制。通过先前和一个任务特定于一般的残差架构展开,我们成功地获得了简单,灵活和数据依赖的图像分离框架。我们将方法应用于四种不同的任务,包括单图像雨条纹,高动态范围色调映射,低光图像增强和单图像反射移除。广泛的实验表明,该方法适用于多个任务,并以规范性和定量的大幅度优于本领域的状态。

著录项

  • 来源
  • 作者单位

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116024 Peoples R China|Dalian Univ Technol Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116024 Peoples R China;

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116024 Peoples R China|Dalian Univ Technol Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116024 Peoples R China;

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116024 Peoples R China|Dalian Univ Technol Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116024 Peoples R China;

    Dalian Univ Technol DUT RU Int Sch Informat Sci & Engn Dalian 116024 Peoples R China|Dalian Univ Technol Key Lab Ubiquitous Network & Serv Software Liaoni Dalian 116024 Peoples R China|Dalian Univ Technol Sch Math Sci Dalian 116024 Peoples R China|Guilin Univ Elect Technol Inst Artificial Intelligence Guilin 541004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Task analysis; Rain; Deep learning; Image edge detection; Lighting; Learning systems; Visualization; Deep unrolling; image enhancement; knowledge-driven; single-image layer separation;

    机译:任务分析;雨;深度学习;图像边缘检测;照明;学习系统;可视化;深度展开;图像增强;知识驱动;单像层分离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号