首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Semisupervised Text Classification by Variational Autoencoder
【24h】

Semisupervised Text Classification by Variational Autoencoder

机译:基于变分自动编码器的半监督文本分类

获取原文
获取原文并翻译 | 示例

摘要

Semisupervised text classification has attracted much attention from the research community. In this paper, a novel model, the semisupervised sequential variational autoencoder (SSVAE), is proposed to tackle this problem. By treating the categorical label of unlabeled data as a discrete latent variable, the proposed model maximizes the variational evidence lower bound of the data likelihood, which implicitly derives the underlying label distribution for the unlabeled data. Analytical work indicates that the autoregressive nature of the sequential model is the crucial issue that renders the vanilla model ineffective. To remedy this, two types of decoders are investigated in the SSVAE model and verified. In addition, a reweighting approach is proposed to circumvent the credit assignment problem that occurs during the reconstruction procedure, which can further improve performance for sparse text data. Experimental results show that our method significantly improves the classification accuracy compared with other modern methods.
机译:半监督文本分类引起了研究界的广泛关注。为了解决这个问题,本文提出了一种新型模型,即半监督顺序变分自编码器(SSVAE)。通过将未标记数据的分类标签视为离散的潜在变量,所提出的模型将数据似然性的变异证据下限最大化,从而隐式得出了未标记数据的基础标签分布。分析工作表明,顺序模型的自回归性质是使香草模型无效的关键问题。为了解决这个问题,在SSVAE模型中研究了两种类型的解码器并进行了验证。另外,提出了一种重新加权的方法来避免在重建过程中发生的信用分配问题,这可以进一步提高稀疏文本数据的性能。实验结果表明,与其他现代方法相比,该方法显着提高了分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号