首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Automatic Sleep Staging Employing Convolutional Neural Networks and Cortical Connectivity Images
【24h】

Automatic Sleep Staging Employing Convolutional Neural Networks and Cortical Connectivity Images

机译:利用卷积神经网络和皮质连通性图像进行自动睡眠分期

获取原文
获取原文并翻译 | 示例

摘要

Understanding of the neuroscientific sleep mechanisms is associated with mental/cognitive and physical well-being and pathological conditions. A prerequisite for further analysis is the identification of the sleep macroarchitecture through manual sleep staging. Several computer-based approaches have been proposed to extract time and/or frequency-domain features with accuracy ranging from 80% to 95% compared with the golden standard of manual staging. However, their acceptability by the medical community is still suboptimal. Recently, utilizing deep learning methodologies increased the research interest in computer-assisted recognition of sleep stages. Aiming to enhance the arsenal of automatic sleep staging, we propose a novel classification framework based on convolutional neural networks. These receive as input synchronizations features derived from cortical interactions within various electroencephalographic rhythms (delta, theta, alpha, and beta) for specific cortical regions which are critical for the sleep deepening. These functional connectivity metrics are then processed as multidimensional images. We also propose to augment the small portion of sleep onset (N1 stage) through the Synthetic Minority Oversampling Technique in order to deal with the great difference in its duration when compared with the remaining sleep stages. Our results (99.85%) indicate the flexibility of deep learning techniques to learn sleep-related neurophysiological patterns.
机译:对神经科学睡眠机制的理解与心理/认知和身体健康以及病理状况相关。进一步分析的先决条件是通过手动睡眠阶段识别睡眠宏体系结构。已经提出了几种基于计算机的方法来提取时域和/或频域特征,与手动登台的黄金标准相比,其准确度范围为80%至95%。但是,它们在医学界的接受度仍然不是最佳的。最近,利用深度学习方法提高了对计算机辅助识别睡眠阶段的研究兴趣。为了增强自动分期的功能,我们提出了一种基于卷积神经网络的新型分类框架。这些接收作为输入同步的特征,这些特征源自对于特定皮质区域(对睡眠加深至关重要)的各种脑电图节律(δ,θ,α和β)内的皮质相互作用。然后将这些功能连接性指标作为多维图像进行处理。我们还建议通过合成少数族裔过采样技术增加一小部分的睡眠发作(N1阶段),以便与其他睡眠阶段相比,其持续时间有很大差异。我们的结果(99.85%)表明深度学习技术可以灵活地学习与睡眠相关的神经生理学模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号