首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Universal Approximation Capability of Broad Learning System and Its Structural Variations
【24h】

Universal Approximation Capability of Broad Learning System and Its Structural Variations

机译:广义学习系统的通用逼近能力及其结构变化

获取原文
获取原文并翻译 | 示例

摘要

After a very fast and efficient discriminative broad learning system (BLS) that takes advantage of flatted structure and incremental learning has been developed, here, a mathematical proof of the universal approximation property of BLS is provided. In addition, the framework of several BLS variants with their mathematical modeling is given. The variations include cascade, recurrent, and broad-deep combination structures. From the experimental results, the BLS and its variations outperform several exist learning algorithms on regression performance over function approximation, time series prediction, and face recognition databases. In addition, experiments on the extremely challenging data set, such as MS-Celeb-1M, are given. Compared with other convolutional networks, the effectiveness and efficiency of the variants of BLS are demonstrated.
机译:在开发了利用扁平化结构和增量学习的非常快速和有效的判别式广泛学习系统(BLS)之后,此处提供了BLS通用逼近性质的数学证明。此外,给出了几种BLS变体的框架及其数学模型。这些变化包括级联,循环和深层组合结构。从实验结果来看,BLS及其变体在功能逼近,时间序列预测和人脸识别数据库上的性能表现优于现有的几种学习算法。此外,还针对极富挑战性的数据集(例如MS-Celeb-1M)进行了实验。与其他卷积网络相比,证明了BLS变体的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号