首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Deep Semantic-Preserving Ordinal Hashing for Cross-Modal Similarity Search
【24h】

Deep Semantic-Preserving Ordinal Hashing for Cross-Modal Similarity Search

机译:跨模态相似搜索的深度语义保留序数散列

获取原文
获取原文并翻译 | 示例

摘要

Cross-modal hashing has attracted increasing research attention due to its efficiency for large-scale multimedia retrieval. With simultaneous feature representation and hash function learning, deep cross-modal hashing (DCMH) methods have shown superior performance. However, most existing methods on DCMH adopt binary quantization functions (e.g., sign(center dot)) to generate hash codes, which limit the retrieval performance since binary quantization functions are sensitive to the variations of numeric values. Toward this end, we propose a novel end-to-end ranking-based hashing framework, in this paper, termed as deep semantic-preserving ordinal hashing (DSPOH), to learn hash functions with deep neural networks by exploring the ranking structure of feature dimensions. In DSPOH, the ordinal representation, which encodes the relative rank ordering of feature dimensions, is explored to generate hash codes. Such ordinal embedding benefits from the numeric stability of rank correlation measures. To make the hash codes discriminative, the ordinal representation is expected to well predict the class labels so that the ranking-based hash function learning is optimally compatible with the label predicting. Meanwhile, the intermodality similarity is preserved to guarantee that the hash codes of different modalities are consistent. Importantly, DSPOH can be effectively integrated with different types of network architectures, which demonstrates the flexibility and scalability of our proposed hashing framework. Extensive experiments on three widely used multimodal data sets show that DSPOH outperforms state of the art for cross-modal retrieval tasks.
机译:交叉模式散列因其对大规模多媒体检索的效率而引起了越来越多的研究关注。通过同时进行特征表示和哈希函数学习,深度交叉模式哈希(DCMH)方法已显示出卓越的性能。但是,大多数关于DCMH的现有方法都采用二进制量化函数(例如,符号(中心点))来生成哈希码,这限制了检索性能,因为二进制量化函数对数值的变化很敏感。为此,我们提出了一种新颖的基于端到端基于排名的哈希框架,称为深度语义保留序哈希(DSPOH),以通过探索特征的排名结构来学习深度神经网络的哈希函数。尺寸。在DSPOH中,探索了编码特征尺寸的相对等级排序的序数表示形式,以生成哈希码。这样的顺序嵌入受益于秩相关度量的数值稳定性。为了使哈希码具有区别性,顺序表示法可以很好地预测类别标签,从而使基于排名的哈希函数学习与标签预测具有最佳兼容性。同时,保留了模态间的相似性,以确保不同模态的哈希码是一致的。重要的是,DSPOH可以有效地与不同类型的网络体系结构集成,这证明了我们提出的哈希框架的灵活性和可扩展性。在三个广泛使用的多模态数据集上进行的广泛实验表明,DSPOH在跨模态检索任务方面的表现优于最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号