首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs
【24h】

fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs

机译:fpgaConvNet:在FPGA上映射规则和不规则卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Since neural networks renaissance, convolutional neural networks (ConvNets) have demonstrated a state-of-the-art performance in several emerging artificial intelligence tasks. The deployment of ConvNets in real-life applications requires power-efficient designs that meet the application-level performance needs. In this context, field-programmable gate arrays (FPGAs) can provide a potential platform that can be tailored to application-specific requirements. However, with the complexity of ConvNet models increasing rapidly, the ConvNet-to-FPGA design space becomes prohibitively large. This paper presents fpgaConvNet, an end-to-end framework for the optimized mapping of ConvNets on FPGAs. The proposed framework comprises an automated design methodology based on the synchronous dataflow (SDF) paradigm and defines a set of SDF transformations in order to efficiently navigate the architectural design space. By proposing a systematic multiobjective optimization formulation, the presented framework is able to generate hardware designs that are cooptimized for the ConvNet workload, the target device, and the application's performance metric of interest. Quantitative evaluation shows that the proposed methodology yields hardware designs that improve the performance by up to 6.65x over highly optimized graphics processing unit designs for the same power constraints and achieve up to 2.94x higher performance density compared with the state-of-the-art FPGA-based ConvNet architectures.
机译:自从神经网络复兴以来,卷积神经网络(ConvNets)已在几种新兴的人工智能任务中展示了最先进的性能。 ConvNets在实际应用程序中的部署需要符合应用程序级性能需求的节能设计。在这种情况下,现场可编程门阵列(FPGA)可以提供一个可以针对特定应用需求量身定制的潜在平台。但是,随着ConvNet模型的复杂性迅速增加,从ConvNet到FPGA的设计空间变得非常大。本文介绍了fpgaConvNet,这是一个用于在FPGA上优化ConvNets映射的端到端框架。提出的框架包括基于同步数据流(SDF)范式的自动化设计方法,并定义了一组SDF转换,以便有效地导航建筑设计空间。通过提出系统的多目标优化公式,提出的框架能够生成针对ConvNet工作负载,目标设备和应用程序感兴趣的性能指标进行共同优化的硬件设计。定量评估表明,与现有技术相比,在相同功率限制下,与高度优化的图形处理单元设计相比,所提出的方法所产生的硬件设计可将性能提高多达6.65倍,并且性能密度最高可达到2.94倍。基于FPGA的ConvNet架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号