首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Stepsize Range and Optimal Value for Taylor–Zhang Discretization Formula Applied to Zeroing Neurodynamics Illustrated via Future Equality-Constrained Quadratic Programming
【24h】

Stepsize Range and Optimal Value for Taylor–Zhang Discretization Formula Applied to Zeroing Neurodynamics Illustrated via Future Equality-Constrained Quadratic Programming

机译:泰勒-张离散化公式的步长范围和最优值,用于通过未来等式约束二次规划说明神经动力学归零

获取原文
获取原文并翻译 | 示例

摘要

In this brief, future equality-constrained quadratic programming (FECQP) is studied. Via a zeroing neurodynamics method, a continuous-time zeroing neurodynamics (CTZN) model is presented. By using Taylor-Zhang discretization formula to discretize the CTZN model, a Taylor-Zhang discrete-time zeroing neurodynamics (TZ-DTZN) model is presented to perform FECQP. Furthermore, we focus on the critical parameter of the TZ-DTZN model, i.e., stepsize. By theoretical analyses, we obtain an effective range of the stepsize, which guarantees the stability of the TZ-DTZN model. In addition, we further discuss the optimal value of the stepsize, which makes the TZ-DTZN model possess the optimal stability (i.e., the best stability with the fastest convergence). Finally, numerical experiments and application experiments for motion generation of a robot manipulator are conducted to verify the high precision of the TZ-DTZN model and the effective range and optimal value of the stepsize for FECQP.
机译:在本文中,对未来的等式约束二次规划(FECQP)进行了研究。通过调零神经动力学方法,提出了一种连续时间调零神经动力学(CTZN)模型。通过使用泰勒-张离散化公式对CTZN模型进行离散,提出了泰勒-张离散时间调零神经动力学(TZ-DTZN)模型来执行FECQP。此外,我们关注TZ-DTZN模型的关键参数,即步长。通过理论分析,我们获得了有效的步长范围,从而保证了TZ-DTZN模型的稳定性。此外,我们进一步讨论了stepsize的最佳值,这使TZ-DTZN模型具有最佳稳定性(即具有最快收敛性的最佳稳定性)。最后,进行了用于机械手运动生成的数值实验和应用实验,以验证TZ-DTZN模型的高精度以及FECQP步长的有效范围和最佳值。

著录项

  • 来源
  • 作者单位

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Foshan 528300, Peoples R China|Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Foshan 528300, Peoples R China|Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Foshan 528300, Peoples R China|Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Foshan 528300, Peoples R China|Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China|Minist Educ, Key Lab Autonomous Syst & Networked Control, Guangzhou 510640, Guangdong, Peoples R China|SYSU CMU Shunde Int Joint Res Inst, Foshan 528300, Peoples R China|Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou 510006, Guangdong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Future equality-constrained quadratic programming (FECQP); motion generation of robot manipulator; optimal value; stepsize range; Taylor-Zhang discretization formula; zeroing neurodynamics;

    机译:未来等式约束二次规划(FECQP);机器人操纵器的运动生成;最优值;步长范围;泰勒-张离散化公式;归零神经动力学;

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号