机译:使用级联Softmax和广义大余量损失训练的改进DCNN进行细粒度图像分类
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;
Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China;
Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;
Cascaded softmax loss; deep convolutional neural network (DCNN); fine-grained image classification; generalized large-margin (GLM) loss; hierarchical label structure;
机译:学习级联注意细粒度的图像分类
机译:使用双级联Softmax CNNS提高基于多功能电动机图像的BCIS的性能
机译:PIV-DCNN:级联深度卷积神经网络,用于粒子图像VELOCIMETRY
机译:使用预训练卷积神经网络基于样式的细粒度时尚图像的图像分类
机译:细粒度图像分类中的特征工程。
机译:探索细粒度图像分类的错误分类信息
机译:利用时间信息进行基于DCNN的细粒度对象分类