首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fine-Grained Image Classification Using Modified DCNNs Trained by Cascaded Softmax and Generalized Large-Margin Losses
【24h】

Fine-Grained Image Classification Using Modified DCNNs Trained by Cascaded Softmax and Generalized Large-Margin Losses

机译:使用级联Softmax和广义大余量损失训练的改进DCNN进行细粒度图像分类

获取原文
获取原文并翻译 | 示例

摘要

We develop a fine-grained image classifier using a general deep convolutional neural network (DCNN). We improve the fine-grained image classification accuracy of a DCNN model from the following two aspects. First, to better model the h-level hierarchical label structure of the fine-grained image classes contained in the given training data set, we introduce h fully connected (fc) layers to replace the top fc layer of a given DCNN model and train them with the cascaded softmax loss. Second, we propose a novel loss function, namely, generalized large-margin (GLM) loss, to make the given DCNN model explicitly explore the hierarchical label structure and the similarity regularities of the fine-grained image classes. The GLM loss explicitly not only reduces between-class similarity and within-class variance of the learned features by DCNN models but also makes the subclasses belonging to the same coarse class be more similar to each other than those belonging to different coarse classes in the feature space. Moreover, the proposed fine-grained image classification framework is independent and can be applied to any DCNN structures. Comprehensive experimental evaluations of several general DCNN models (AlexNet, GoogLeNet, and VGG) using three benchmark data sets (Stanford car, fine-grained visual classification-aircraft, and CUB-200-2011) for the fine-grained image classification task demonstrate the effectiveness of our method.
机译:我们使用通用的深度卷积神经网络(DCNN)开发了细粒度的图像分类器。从以下两个方面,我们提高了DCNN模型的细粒度图像分类精度。首先,为了更好地建模给定训练数据集中包含的细粒度图像类的h级分层标签结构,我们引入了h个完全连接(fc)层来替换给定DCNN模型的顶层fc层并对其进行训练与级联的softmax损失。其次,我们提出了一种新颖的损失函数,即广义大余量(GLM)损失,以使给定的DCNN模型明确地探索层次结构的标签结构和细粒度图像类的相似性规律。 GLM损失明确地不仅减少了DCNN模型对学习特征的类间相似性和类内方差,而且使属于同一粗类的子类比那些在特征中属于不同粗类的子类彼此更相似。空间。此外,所提出的细粒度图像分类框架是独立的,并且可以应用于任何DCNN结构。使用三个基准数据集(斯坦福汽车,细粒度视觉分类飞机和CUB-200-2011)对细粒度图像分类任务对几种通用DCNN模型(AlexNet,GoogLeNet和VGG)进行了全面的实验评估,证明了我们方法的有效性。

著录项

  • 来源
  • 作者单位

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Dept Comp Sci, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Natl Engn Lab Visual Informat Proc & Applicat, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cascaded softmax loss; deep convolutional neural network (DCNN); fine-grained image classification; generalized large-margin (GLM) loss; hierarchical label structure;

    机译:级联softmax损失;深度卷积神经网络(DCNN);细粒度图像分类;广义大余量(GLM)损失;分层标签结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号