首页> 外文期刊>Neural network world journal >EARTHQUAKE PREDICTION MODEL BASED ON DANGER THEORY IN ARTIFICIAL IMMUNITY
【24h】

EARTHQUAKE PREDICTION MODEL BASED ON DANGER THEORY IN ARTIFICIAL IMMUNITY

机译:基于人工免疫危险理论的地震预测模型

获取原文
获取原文并翻译 | 示例

摘要

Earthquake prediction is an extraordinarily stochastic process. Determining the occurrence time, location of epicenter and magnitude of a coming earthquake in the following month is an extremely difficult task. Nowadays, some geophysical, statistical and machine learning methods are adopted to predict earthquakes, however, for the insufficient medium-large seismic data, their results are not satisfactory. Due to there is no obvious empirical relationship between seismicity features, magnitude and location of a coming earthquake in a particular time window, an earthquake prediction approach based on danger theory is proposed in this paper. It extracts eight indicators calculated from earthquake data for recent years in Sichuan and surroundings by Gutenberg-Richter(GR) inverse power-law, and predicts quakes with magnitude lager than 4.5 during the following month by numerical differential based Dendritic Cell Algorithm (ndDCA). We compare this approach with six state-of-art earthquake prediction algorithms. Overall our algorithm yields the encouraging results in all the qualified parameters assessed, and it provides technical support for the application of earthquake prediction.
机译:地震预测是一个非常随机的过程。确定发生时间,在下个月内发生震中的震中和幅度的位置是一个极其艰巨的任务。如今,采用了一些地球物理,统计和机器学习方法来预测地震,然而,对于中大地震数据不足,它们的结果并不令人满意。由于在特定时间窗口中出现地震的地震性,幅度和位置之间没有明显的经验关系,本文提出了一种基于危险理论的地震预测方法。提取近年来在四川及周边地区从地震数据计算的八个指标由Gutenberg-Richter(GR)逆动力法,并通过数值差分的树突细胞算法(NDDCA)在下个月内预测幅度滞后的Quakes。我们将这种方法与六种最先进的地震预测算法进行比较。总的来说,我们的算法产生了评估所有合格参数的令人鼓舞的结果,它为应用地震预测提供了技术支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号