首页> 外文期刊>Neural network world journal >A DISCRETE BUTTERFLY-INSPIRED OPTIMIZATION ALGORITHM FOR SOLVING PERMUTATION FLOW-SHOP SCHEDULING PROBLEMS
【24h】

A DISCRETE BUTTERFLY-INSPIRED OPTIMIZATION ALGORITHM FOR SOLVING PERMUTATION FLOW-SHOP SCHEDULING PROBLEMS

机译:一种离散的蝴蝶启动优化算法,用于求解流动店调度问题

获取原文
获取原文并翻译 | 示例

摘要

Permutation Flow-Shop Scheduling Problem (PFSP) which exists in many manufacturing systems is a classic combinatorial optimization problem. Studies have shown that the PFSP including more than three machines belongs to the NP-hard problems and is difficult to solve. Based on a new bio-inspired algorithm - Artificial Butterfly Optimization (ABO) algorithm, this paper presents a Discrete Artificial Butterfly Optimization (DABO) algorithm to find the permutation that gives the smallest completion time or the smallest total flow time. The performance of the proposed algorithm is tested on well-known benchmark suites of Car, Reeves and Taillard. The experimental results show that the proposed algorithm is able to provide very promising and competitive results on most benchmark functions. The DABO algorithm is then employed for one production optimization problem.
机译:许多制造系统中存在的排列流程店调度问题(PFSP)是一种经典组合优化问题。 研究表明,包括三种机器的PFSP属于NP难题,并且难以解决。 基于一种新的生物启发算法 - 人工蝴蝶优化(ABO)算法,本文提出了一种离散人工蝴蝶优化(DABO)算法,找到提供最小完成时间或最小总流量时间的排列。 所提出的算法的性能是在众所周知的汽车,REEVES和TAILLARD的众所周知的基准套件上进行测试。 实验结果表明,该算法能够在大多数基准函数上提供非常有前途和竞争结果。 然后使用DABO算法用于一个生产优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号