首页> 外文期刊>Neural Network World >REPRESENTATION LEARNING OF KNOWLEDGE GRAPHS USING CONVOLUTIONAL NEURAL NETWORKS
【24h】

REPRESENTATION LEARNING OF KNOWLEDGE GRAPHS USING CONVOLUTIONAL NEURAL NETWORKS

机译:使用卷积神经网络表示知识图表的学习

获取原文
获取原文并翻译 | 示例

摘要

Knowledge graphs have been playing an important role in many Artificial Intelligence (AI) applications such as entity linking, question answering and so forth. However, most of previous studies focused on the symbolic representation of knowledge graphs with structural information, which cannot deal well with new entities or rare entities with little relevant knowledge. In this paper, we propose a new deep knowledge representation architecture that jointly encodes both structure and textual information. We first propose a novel neural model to encode the text descriptions of entities based on Convolutional Neural Networks (CNN). Secondly, an attention mechanism is applied to capture the valuable information from these descriptions. Then we introduce position vectors as supplementary information. Finally, a gate mechanism is designed to integrate representations of structure and text into the joint representation. Experimental results on two datasets show that our models obtain state-of-the-art results on link prediction and triplet classification tasks, and achieve the best performance on the relation classification task.
机译:知识图表在许多人工智能(AI)应用中播放了重要作用,例如实体链接,问题应答等。然而,以前的大多数研究专注于具有结构信息的知识图表的象征性表示,这不能与新实体或罕见的实体交易,具有很少的相关知识。在本文中,我们提出了一种新的深度知识表示架构,共同编码结构和文本信息。我们首先提出了一种新的神经模型来编码基于卷积神经网络(CNN)的实体的文本描述。其次,应用注意力机制来捕获这些描述中的有价值的信息。然后我们将位置向量介绍为补充信息。最后,栅极机制被设计成将结构和文本的表示集成到关节表示中。两个数据集上的实验结果表明,我们的模型在链路预测和三联分类任务上获得最先进的结果,并在关系分类任务中实现最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号