首页> 外文期刊>Neural Computing and Applications >Hybrid neuro-swarm optimization approach for design of distributed generation power systems
【24h】

Hybrid neuro-swarm optimization approach for design of distributed generation power systems

机译:混合神经群优化方法在分布式发电系统设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

The global energy sector faces major challenges in providing sufficient energy to the worlds ever-increasing energy demand. Options to produce greener, cost effective, and reliable source of alternative energy need to be explored and exploited. One of the major advances in the development of this sort of power source was done by integrating (or hybridizing) multiple different alternative energy sources (e.g., wind turbine generators, photovoltaic cell panels, and fuel-fired generators, equipped with storage batteries) to form a distributed generation (DG) power system. However, even with DG power systems, cost effectiveness, reliability, and pollutant emissions are still major issues that need to be resolved. The model development and optimization of the DG power system were carried out successfully in the previous work using particle swarm optimization (PSO). The goal was to minimize cost, maximize reliability, and minimize emissions (multi-objective function) subject to the requirements of the power balance and design constraints. In this work, the optimization was performed further using Hopfield neural networks (HNN), PSO, and HNN-PSO techniques. Comparative studies and analysis were then carried out on the optimized results.
机译:在为世界不断增长的能源需求提供充足的能源方面,全球能源部门面临重大挑战。需要探索和开发产生更绿色,更具成本效益和可靠的替代能源的方案。通过将多种不同的替代能源(例如,配备有蓄电池的风力涡轮发电机,光伏电池板和燃料发电机)集成(或混合),实现了这种电源开发的一项重大进步。形成分布式发电(DG)电力系统。但是,即使是DG电力系统,成本效益,可靠性和污染物排放仍然是需要解决的主要问题。 DG电力系统的模型开发和优化是在先前的工作中使用粒子群优化(PSO)成功进行的。目标是根据功率平衡和设计约束的要求,将成本最小化,将可靠性最大化,并将排放(多目标功能)减至最少。在这项工作中,使用Hopfield神经网络(HNN),PSO和HNN-PSO技术进一步进行了优化。然后对优化结果进行比较研究和分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号